- Home
- Standard 11
- Physics
14.Waves and Sound
normal
A transverse wave in a medium is described by the equation $y = A \sin^2 \,(\omega t -kx)$. The magnitude of the maximum velocity of particles in the medium will be equal to that of the wave velocity, if the value of $A$ is ($\lambda$ = wavelngth of wave)
A
$\lambda / 2 \pi$
B
$\lambda / 4 \pi$
C
$\lambda / \pi$
D
$2 \lambda / \pi$
Solution
$Y=\frac{A}{2}[1-\cos (2 \omega t-2 k x)]$
particle velocity $(\mathrm{VP})_{\max }=\frac{\mathrm{A}}{2} \times 2 \omega=\mathrm{A} \omega$
wave velocity $V=\frac{2 \omega}{2 k}=\frac{2 \omega}{2 \pi} \lambda$
Given $\left(\mathrm{V}_{\max }\right) \mathrm{p}=\mathrm{V}$
$\frac{2 \omega \lambda}{2 \pi}=\omega A \rightarrow A=\lambda / \pi$
Standard 11
Physics
Similar Questions
normal